China Custom Smart Switching Double Triple Quadrupedal Oil-Free Scroll Air Compressor with high quality

Product Description

Smart switching double triple quadrupedal oil-free scroll air compressor 

Product Description

1. Description

  The compressed air is generated by the air compressor, enters the gas storage tank through the aftercooler, and then removes impurities, oil mist and moisture in the compressed air through the filter group and the adsorption dryer, and then is regulated by the pressure reducer. Compressed air ducts are used in medical equipment such as operating rooms and ICUs.

  The central compressed air station is composed of an air compressor, an aftercooler, a gas storage tank, a filter group, an adsorption dryer, an automatic control cabinet, and an alarm. Usually it is a two-unit configuration, 1 for each.

2. Why use dry, clean compressed air?

IInhibit the survival and reproduction of bacteria
Prevent condensation into liquid water at low temperatures
Liquid water will damage these equipment after entering the anesthesia machine or ventilator
Prevent icing blocked pipes below zero
High humidity in the pipe can cause oxidation of the pipe
 

3. Advantage
1.Oil-free design, ensuring the generation of qualified medical air
2.Reduced equipment failure frequency, saving costs 
3.Controlled moisture content, achieving high safety performance
 

 4. CHINAMFG Hospital Compressed Air Generator  Working Principle

 
4.1 Medical Compressed Air Station System Specifications

System Model  Air Compressor Purification controller Air tanks (M3) Output Consumption (M3/min) Output Pressure (Mpa)
Model  Number Model  Number
ETA-04 ET-YA041 1 ET-YK15 1 0.3 0.41 0.4-0.6
ETA-07 ET-YA042 1 ET-YK15 1 0.3 0.82 0.4-0.6
ETA-11 ET-YA043 1 ET-YK26 1 0.6 1.23 0.4-0.6
ETA-15 ET-YA042 2 ET-YK26 1 0.6 1.64 0.4-0.6
ETA-22 ET-YA043 2 ET-YK38 1 1 2.46 0.4-0.6
ETA-30 ET-YA043 3 ET-YK38 1 1 3.69 0.4-0.6

4.2 Air Compressor Specifications

Model

Output 

Consumption

 (M3/min)

Working pressure (Mpa) Power

Power

(KW)

L*W*H(mm) Weight(KG) Noise(dB)
ET-YA041 0.41 0.6-0.8 AC380V/50Hz/3P 4 1300×700×750 170 65±3
ET-YA042 0.82 0.6-0.8 AC380V/50Hz/3P 8 1300×700×1350 255 65±3
ET-YA043 1.23 0.6-0.8 AC380V/50Hz/3P 12 1300×700×1950 345 65±3

 4.3 Purification Controller Specifications

Model Capacity (M3/min) Working pressure (Mpa) Power 

Power

  (KW)

Dew Point (ºC) Weight (KG) L*W*H(mm) Noise(dB)
ET-YK15 1.5 0.6-0.8 AC220V/50Hz 30 </=-40 356 1300×900×1700 </=75
ET-YK26 2.6 0.6-0.8 AC220V/51Hz 30 </=-40 374 1300×900×1700 </=75
ET-YK38 3.8 0.6-0.8 AC220V/52Hz 30 </=-40 412 1300×900×1700 </=75

 
5. Quality Control Process
ETR Enigineering & Technology,clients can be sure of the quality of CHINAMFG solution. ETR uses only the best suppliers and components. And  all compress air system are tested & commissioned by professional Experts to make sure everything is qualified before they leave the factory.

 

 

FAQ

 1. Are you manufacturer or Trade Company?
   We are the manufacturer of compress air system, founded in 2003.

 2. What’s the order compress air system  process?
   a. Inquiry—provide us all clear requirements.
   b. Quotation—official quotation form with all clear specifications.
   c. Printing file— PDF, Ai, CDR, PSD, the picture resolution must be at least 300 dpi.
   d. Contract confirmation—provide correct contract details.
   e. Payment terms— Negotiable.
   f. Production—mass production
   g. Shipping— by sea, air or courier. Detailed picture of package will be provided.
   h. Installation and commissioning

3.What terms of payment you use?
   T/T, L/C etc.

After-sales Service: One Year
Warranty: One Year
Principle: Rotary Compressor
Application: Medical/Hospital/Clinic
Performance: Low Noise
Mute: Mute
Customization:
Available

|

air compressor

What Are the Downsides of Using Oil-Free Air Compressors?

While oil-free air compressors offer numerous advantages, there are also some downsides to consider. Understanding these drawbacks is important when evaluating the suitability of oil-free compressors for specific applications. Here’s a detailed explanation of the downsides of using oil-free air compressors:

1. Higher Initial Cost:

Oil-free air compressors generally have a higher initial cost compared to oil-lubricated compressors. The design and technology used in oil-free compressors, such as specialized coatings, precision manufacturing, and advanced filtration systems, contribute to their higher price tag. This can be a significant factor for budget-conscious buyers or for applications where cost is a primary consideration. However, it’s important to weigh the initial cost against the long-term benefits and potential cost savings in terms of maintenance, energy efficiency, and reduced risk of oil contamination.

2. Reduced Durability:

Oil-free compressors may have slightly reduced durability compared to oil-lubricated compressors. The absence of oil for lubrication can result in increased wear on certain components, such as piston rings, valves, and bearings. However, modern advancements in materials and engineering have significantly improved the durability and lifespan of oil-free compressors. With proper maintenance and adherence to recommended operating conditions, oil-free compressors can still provide reliable performance over an extended period.

3. Higher Energy Consumption:

Oil-free air compressors typically have higher energy consumption compared to oil-lubricated compressors. The absence of oil for lubrication increases friction within the compressor, requiring more energy to overcome this resistance. However, advancements in compressor design, such as improved air ends, energy-efficient motors, and variable speed drives, have helped minimize this energy consumption gap. Additionally, the potential energy savings from eliminating the need for oil changes and reducing the risk of pressure drops due to oil contamination can offset the higher energy consumption over the compressor’s lifetime.

4. Limited Cooling Capacity:

Oil-free compressors may have limited cooling capacity compared to oil-lubricated compressors. Oil acts as a lubricant and coolant in oil-lubricated compressors, effectively dissipating heat generated during compression. In contrast, oil-free compressors rely on other cooling mechanisms, such as air or water cooling, which may have limitations in handling high heat loads. This can be a consideration for applications that require continuous or high-duty cycle operation in elevated ambient temperatures. Adequate cooling systems and proper monitoring of temperature limits are necessary to prevent overheating and ensure optimal performance of oil-free compressors.

5. Noisy Operation:

Oil-free air compressors are generally noisier compared to oil-lubricated compressors. The absence of lubricating oil can result in increased noise levels due to direct metal-to-metal contact between rotating and reciprocating parts. However, advancements in noise reduction technologies and sound insulation materials have helped mitigate this issue to some extent. Additionally, the noise level can vary between different models and brands of oil-free compressors, so it’s important to consider the specific noise requirements of the application and select a compressor that meets those criteria.

Despite these downsides, oil-free air compressors have become increasingly popular and widely used in various industries due to their advantages in providing clean, oil-free compressed air. It’s important to assess the specific requirements of the application, consider the trade-offs, and consult with compressed air experts to determine whether an oil-free compressor is the most suitable choice.

air compressor

Can Oil-Free Compressors Be Integrated into Existing Systems?

Yes, oil-free compressors can be integrated into existing systems in many cases. Here’s a detailed explanation of the integration possibilities and considerations when incorporating oil-free compressors into existing systems:

1. Compatibility:

Before integrating an oil-free compressor into an existing system, it’s important to assess the compatibility between the compressor and the system. Consider factors such as the required air pressure and flow rate, the electrical requirements, and the physical space available for installation. Compare these requirements with the capabilities and specifications of the oil-free compressor to ensure a suitable match.

2. Installation:

The installation process may vary depending on the specific system and compressor configuration. In some cases, it may be a straightforward replacement of the existing compressor with the oil-free compressor. However, certain modifications or adjustments may be necessary to accommodate the differences between oil-lubricated and oil-free compressors. For example, oil-free compressors may require additional filtration or moisture removal equipment to maintain the desired air quality. It’s essential to follow the manufacturer’s installation guidelines and consult with qualified professionals if needed.

3. Piping and Connections:

When integrating an oil-free compressor into an existing system, the piping and connections need to be evaluated. The existing piping should be inspected for any potential issues such as leaks, corrosion, or inadequate sizing. Depending on the specific requirements of the oil-free compressor, modifications to the piping system may be necessary to ensure proper airflow, pressure drop, and connection compatibility. It’s crucial to ensure that the piping system can handle the air volume and pressure generated by the oil-free compressor without any restrictions or safety risks.

4. Control and Monitoring:

Integrating an oil-free compressor into an existing system may involve adjustments to the control and monitoring components. The control system should be capable of effectively operating and regulating the oil-free compressor based on the desired air pressure and flow requirements. This may require reprogramming or reconfiguring the control settings to accommodate the specific features and functionalities of the oil-free compressor. Additionally, monitoring systems should be updated to include relevant parameters specific to oil-free compressor operation, such as air purity levels or maintenance alerts.

5. Training and Familiarization:

When integrating an oil-free compressor into an existing system, it’s important to provide training and familiarization to the personnel responsible for operating and maintaining the equipment. The differences between oil-lubricated and oil-free compressors should be clearly explained, including any specific maintenance requirements or operational considerations. Training sessions can help ensure that the staff understands the new equipment and can effectively operate and maintain it in a safe and efficient manner.

6. Benefits and Considerations:

Integrating an oil-free compressor into an existing system offers several benefits. It can improve air quality, eliminate the risk of oil contamination, and enhance the performance and reliability of the compressed air system. However, it’s important to consider the initial investment costs, potential modifications required, and the overall compatibility with the existing system. Conducting a thorough cost-benefit analysis and consulting with experts can help determine the feasibility and potential advantages of integrating an oil-free compressor into the existing system.

In summary, oil-free compressors can generally be integrated into existing systems with proper assessment, planning, and installation procedures. Evaluating compatibility, ensuring appropriate installation, addressing piping and connection requirements, adjusting control and monitoring systems, providing adequate training, and considering the associated benefits and considerations are crucial steps in successfully integrating an oil-free compressor into an existing system.

air compressor

Are Oil-Free Air Compressors More Environmentally Friendly?

Oil-free air compressors are considered more environmentally friendly compared to oil-lubricated air compressors. These compressors offer several features and advantages that contribute to their eco-friendly nature. Here’s a detailed explanation of why oil-free air compressors are considered more environmentally friendly:

1. Elimination of Oil Contamination:

One of the significant environmental benefits of oil-free air compressors is the elimination of oil contamination in the compressed air system. Oil-lubricated compressors require oil for lubrication, which can potentially leak or contaminate the compressed air. Oil contamination can have adverse effects on downstream equipment, processes, and the environment. In contrast, oil-free air compressors operate without oil, ensuring clean, oil-free compressed air and eliminating the risk of oil contamination.

2. Reduction of Oil Spills and Leaks:

Oil-lubricated compressors have a higher risk of oil spills or leaks due to the presence of lubricating oil in the system. Oil spills can have severe environmental consequences, polluting soil, water bodies, and ecosystems. Oil-free air compressors eliminate the risk of oil spills or leaks, as there is no oil used in the compression process. This reduces the potential harm to the environment and minimizes the need for costly cleanup efforts.

3. Energy Efficiency:

Oil-free air compressors can be more energy-efficient compared to oil-lubricated compressors. The absence of oil in the compression chamber reduces internal friction and mechanical losses, resulting in improved energy efficiency. Energy-efficient compressors consume less electricity, leading to reduced energy consumption and lower greenhouse gas emissions. By using oil-free compressors, businesses can contribute to energy conservation and environmental sustainability.

4. Lower Environmental Footprint:

Due to the elimination of oil-related maintenance tasks, such as oil filtration, oil changes, and oil disposal, oil-free compressors have a lower environmental footprint. These maintenance activities associated with oil-lubricated compressors require the use of resources and generate waste, including used oil and oil filters. By using oil-free compressors, the consumption of resources and the generation of hazardous waste are reduced, contributing to a more sustainable and environmentally friendly operation.

5. No Oil Contamination in Air Tools and Products:

Oil contamination in compressed air can have detrimental effects on air tools, pneumatic equipment, and end products. Oil-free air compressors ensure that the compressed air delivered to these devices is clean and oil-free. This helps maintain the performance and longevity of air tools and prevents oil-related product defects. By using oil-free compressors, businesses can avoid costly repairs or replacements of equipment and minimize the risk of producing non-conforming or defective products.

It’s important to note that while oil-free air compressors offer environmental advantages, they may have certain limitations and considerations. These include the need for specialized maintenance, potential higher operating temperatures, and reduced maximum operating pressures compared to oil-lubricated compressors. Therefore, it’s essential to evaluate the specific requirements of the application and consider the trade-offs between environmental benefits and operational considerations when choosing an air compressor.

China Custom Smart Switching Double Triple Quadrupedal Oil-Free Scroll Air Compressor   with high qualityChina Custom Smart Switching Double Triple Quadrupedal Oil-Free Scroll Air Compressor   with high quality
editor by CX 2023-10-12