China Best Sales Oil Free Air Compressor, Vacuum Air Pump, Air Compressor portable air compressor

Product Description

Made by Aluminum alloy
Small body, small weight
High pressure and Oil free

The high press air compressor made by aluminum alloy, that make it samll body and small weight.

The products are widely used for new energy bus, truck, Environmental Protection Engineering, Electronic Engineering, industry absorbing, etc. Our factory passed the CCC authentication in 2003, and passed the certificate of CE Standard in 2006. Which assureed the security quality of the products. The technology of our factory is advanced. We imported and used the international advanced technology to make the fight of the quality. Now our products are exported to European countries and America. There are over 300 distributors by special arrangement sellors all over China to provide best service.

Item No.: BIX55-4V
1. Power is 3.0KW.
2. Voltage is 3 phase 220V to 415V. 50Hz/60Hz
3. Air flux is 500L / MIN
4. Air pressure is 10 ba
5. Oil free
6. Assembly dimensions: 590×470×440 MM
7. Product net weight: 48KGS

 

Welcome to send us your product drawings for quotation.

Small quantity order is acceptable.

We pay attention to your inquriy, and take quotation as our

important work.

 

ZheJiang CHINAMFG Electrical Machinery Equipment Co., Ltd

Contact man: Austin.Wang

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Oil-Free Air Compressors Handle High-Pressure Applications?

Yes, oil-free air compressors are capable of handling high-pressure applications, but certain considerations need to be taken into account. Here’s a detailed explanation of the capabilities and considerations regarding the use of oil-free air compressors in high-pressure applications:

1. Compressor Design:

Oil-free air compressors are designed to deliver oil-free compressed air, and some models are specifically engineered to handle high-pressure requirements. These compressors incorporate robust components, such as high-strength materials, reinforced valves, and advanced sealing technologies, to withstand the higher pressures generated during compression. They are typically designed to operate within specific pressure ranges, and their performance and reliability are optimized for those ranges.

2. Pressure Rating:

When selecting an oil-free air compressor for a high-pressure application, it is crucial to consider the compressor’s pressure rating. The pressure rating indicates the maximum pressure that the compressor can reliably generate and maintain. Oil-free compressors suitable for high-pressure applications are available with varying pressure ratings, ranging from several hundred PSI (pounds per square inch) to several thousand PSI, depending on the specific model and manufacturer. It’s important to choose a compressor with a pressure rating that meets or exceeds the requirements of the intended application.

3. Operating Efficiency:

Operating efficiency is an important consideration when using oil-free air compressors for high-pressure applications. As the pressure requirement increases, the compressor may consume more energy to achieve and maintain the desired pressure. It’s advisable to select a compressor that is optimized for energy efficiency, as it can help reduce operating costs and minimize environmental impact. Compressors equipped with advanced control systems, variable speed drives, and efficient motor designs can enhance overall energy efficiency in high-pressure applications.

4. Air Treatment and Filtration:

High-pressure applications often require dry and clean compressed air. In addition to the oil-free operation, it is important to ensure that the compressed air is adequately treated and filtered to remove moisture, particulates, and other contaminants. The use of appropriate air dryers, filters, and separators in the compressed air system is necessary to maintain the desired air quality and protect downstream equipment in high-pressure applications.

5. System Safety and Regulations:

High-pressure applications present additional safety considerations. It is essential to ensure that the entire compressed air system, including the compressor, storage tanks, piping, and safety devices, is designed, installed, and operated in compliance with relevant safety regulations and standards. Pressure relief valves, pressure gauges, and other safety devices should be appropriately sized and configured to handle the high-pressure conditions. Regular inspections, maintenance, and adherence to safety protocols are crucial to ensure the safe operation of the high-pressure oil-free air compressor system.

It’s important to consult with compressor manufacturers or industry experts to determine the suitability of specific oil-free compressors for high-pressure applications. They can provide guidance on selecting the right compressor model, assessing system requirements, and ensuring compliance with safety standards.

By considering the design, pressure rating, operating efficiency, air treatment, and system safety, oil-free air compressors can successfully handle high-pressure applications in various industries, including manufacturing, automotive, aerospace, and energy.

air compressor

Can Oil-Free Compressors Be Integrated into Existing Systems?

Yes, oil-free compressors can be integrated into existing systems in many cases. Here’s a detailed explanation of the integration possibilities and considerations when incorporating oil-free compressors into existing systems:

1. Compatibility:

Before integrating an oil-free compressor into an existing system, it’s important to assess the compatibility between the compressor and the system. Consider factors such as the required air pressure and flow rate, the electrical requirements, and the physical space available for installation. Compare these requirements with the capabilities and specifications of the oil-free compressor to ensure a suitable match.

2. Installation:

The installation process may vary depending on the specific system and compressor configuration. In some cases, it may be a straightforward replacement of the existing compressor with the oil-free compressor. However, certain modifications or adjustments may be necessary to accommodate the differences between oil-lubricated and oil-free compressors. For example, oil-free compressors may require additional filtration or moisture removal equipment to maintain the desired air quality. It’s essential to follow the manufacturer’s installation guidelines and consult with qualified professionals if needed.

3. Piping and Connections:

When integrating an oil-free compressor into an existing system, the piping and connections need to be evaluated. The existing piping should be inspected for any potential issues such as leaks, corrosion, or inadequate sizing. Depending on the specific requirements of the oil-free compressor, modifications to the piping system may be necessary to ensure proper airflow, pressure drop, and connection compatibility. It’s crucial to ensure that the piping system can handle the air volume and pressure generated by the oil-free compressor without any restrictions or safety risks.

4. Control and Monitoring:

Integrating an oil-free compressor into an existing system may involve adjustments to the control and monitoring components. The control system should be capable of effectively operating and regulating the oil-free compressor based on the desired air pressure and flow requirements. This may require reprogramming or reconfiguring the control settings to accommodate the specific features and functionalities of the oil-free compressor. Additionally, monitoring systems should be updated to include relevant parameters specific to oil-free compressor operation, such as air purity levels or maintenance alerts.

5. Training and Familiarization:

When integrating an oil-free compressor into an existing system, it’s important to provide training and familiarization to the personnel responsible for operating and maintaining the equipment. The differences between oil-lubricated and oil-free compressors should be clearly explained, including any specific maintenance requirements or operational considerations. Training sessions can help ensure that the staff understands the new equipment and can effectively operate and maintain it in a safe and efficient manner.

6. Benefits and Considerations:

Integrating an oil-free compressor into an existing system offers several benefits. It can improve air quality, eliminate the risk of oil contamination, and enhance the performance and reliability of the compressed air system. However, it’s important to consider the initial investment costs, potential modifications required, and the overall compatibility with the existing system. Conducting a thorough cost-benefit analysis and consulting with experts can help determine the feasibility and potential advantages of integrating an oil-free compressor into the existing system.

In summary, oil-free compressors can generally be integrated into existing systems with proper assessment, planning, and installation procedures. Evaluating compatibility, ensuring appropriate installation, addressing piping and connection requirements, adjusting control and monitoring systems, providing adequate training, and considering the associated benefits and considerations are crucial steps in successfully integrating an oil-free compressor into an existing system.

air compressor

How Do Oil-Free Air Compressors Compare to Oil-Lubricated Ones?

When comparing oil-free air compressors to oil-lubricated ones, several factors come into play, including performance, maintenance requirements, air quality, and application suitability. Here’s a detailed comparison between oil-free air compressors and oil-lubricated ones:

1. Oil Contamination:

Oil-lubricated compressors require oil for lubrication and cooling of internal components. However, there is a risk of oil carryover, where small amounts of oil can mix with the compressed air. This oil contamination can have adverse effects on downstream equipment, processes, and end products. In contrast, oil-free air compressors eliminate the risk of oil contamination as they operate without lubricating oil. This makes them suitable for applications that require clean and oil-free compressed air, such as in the food and beverage, pharmaceutical, and electronics industries.

2. Compressed Air Quality:

Oil-lubricated compressors may introduce oil aerosols, vapors, or particles into the compressed air stream. While filters and separators can help mitigate oil contamination, achieving completely oil-free compressed air may be challenging. In contrast, oil-free air compressors deliver clean and dry compressed air without any oil content. They are designed to meet strict air quality standards, such as ISO 8573-1 Class 0, ensuring the highest level of air purity. This makes them ideal for applications where air quality is critical, such as in pharmaceutical manufacturing, research laboratories, and electronics assembly.

3. Maintenance Requirements:

Oil-lubricated compressors require regular maintenance to ensure proper lubrication, filter replacement, and oil changes. The presence of oil also necessitates careful monitoring of oil levels and potential leaks. Maintenance tasks can be more involved and time-consuming compared to oil-free compressors. On the other hand, oil-free air compressors generally have lower maintenance requirements since they don’t require oil changes or oil-related maintenance. However, regular maintenance tasks such as filter replacements and general system checks are still necessary to maintain optimal performance and reliability.

4. Initial Cost and Energy Efficiency:

Oil-lubricated compressors typically have a lower initial cost compared to oil-free compressors. However, oil-free compressors can offer long-term cost savings due to reduced maintenance requirements and lower energy consumption. Oil-lubricated compressors use oil for lubrication, which adds to the energy consumption as the compressor needs to overcome the friction generated by the oil. In contrast, oil-free compressors eliminate the need for oil, resulting in higher energy efficiency and potential energy savings over the compressor’s lifespan.

5. Application Suitability:

The choice between oil-free and oil-lubricated compressors depends on the specific application requirements. Oil-lubricated compressors are often suitable for general industrial applications where compressed air quality is not critical, and oil carryover is acceptable. They are commonly used in manufacturing, construction, and automotive industries. On the other hand, oil-free compressors are essential for applications that demand clean and oil-free compressed air, such as in food processing, pharmaceutical production, electronics manufacturing, and critical research environments.

It’s important to consider the specific needs of the application, industry regulations, and the desired level of compressed air purity when choosing between oil-free and oil-lubricated compressors. Consulting with compressed air experts and considering factors such as air quality requirements, maintenance costs, and long-term energy efficiency can help determine the most suitable compressor type for a particular application.

China Best Sales Oil Free Air Compressor, Vacuum Air Pump, Air Compressor   portable air compressorChina Best Sales Oil Free Air Compressor, Vacuum Air Pump, Air Compressor   portable air compressor
editor by CX 2024-05-03